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Abstract

A factorable surface arises as a
graph of a functwion = f(u)g(v).
In this paper, we study the dual fac-
torable surfaces in three dimensional
simply isotropic space. We clas-
sify dual factorable surface with con-
stant dual isotropic mean curvature
or constant dual isotropic Guassian
curvature.

1. Introduction

Projective spaces enjoy a princi-
ple of duality, for example in pro-
jective 3-spaces, points are dual to
planes and vice versa, straight lines
are dual to straight lines and inclu-
sions are reversed. However, duality
cannot be applied to metric quan-
tities of Euclidean geometry. This
is dierent in isotropic geometry,
which have a metric duality which
may be realized by the polarity with
respect to the isotropic unit sphere

: z=
1

2
(x 2 + y2):

It maps a point p = (p 1; p2; p3)
to the plane P with equation z =
p1x+ p2y p3. Pointsp, q with i-
distancedare mapped to planPe,s

Qwith i-angledand vice versa. Par-
allel points correspond in the duality
to parallel planes.

A surfacex: z = h(u; v), seen
as set of contact elements (points
plus tangent planes) corresponds to
a surfacex , parameterized by
8
<

:

x = hu (u; v);
y = hv (u; v);
z = uhu (u; v) + vhv (u; v) h(u; v):

Contact elements along isotropic
principal curvature lines of M and
M correspond in the duality. Note
that M may have singularities
which correspond to parabolic sur-
face points of M (K = 0). This
is reected in the following rela-
tions between the isotropic curva-
ture measures of dual surface pairs:

K =
1

K
; H =

H

K
;

where H(K) is the isotropic
mean(Gaussian) curvature and
H (K ) is the dual isotropic
mean(Gaussian) curvature. Thus,
the dual isotropic minimal surface
is also isotropic minimal ([8, 9]).

In this paper, we extended the
notion of duality to translation sur-
faces in isotropic spaces and obtain
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the classication results for dual
isotropic curvatures of translation
surfaces.

2. Preliminaries

Motions and metric Isotropic ge-
ometry is based on the following
groupG 6 of ane transformations
(x; y; z)! (x 0; y0; z0) in R3;

x0 = a+ xcos ysin
y0 = b+ xsin + ycos
z0 = c+ +c 1x+ c2y+ z

9
=

;
;

where a; b; c;c1; c2; 2 R. Such
ane transformations ar e called
isotropic congruence transforma-
tions or isotropic motions . We see
that isotropic motions appear as Eu-
clidean motions (a translation and a
rotation) in the projection onto the
xyplane the result of this projec-
tion, P = (x; y; z) ! P0 = (x; y; 0)
is called the "top view" ([9, 8, 16]).
Hence, an isotropic motion is com-
posed of a Euclidean motion in the
xyplane and an ane shear trans-
formation in the z direction.

On the other hand, the isotropic
distance of two points P =
(x 1; y1; z1) and Q = (x 2; y2; z2) is
dened as the Euclidean distance of
the top views, i.e.,

d(P; Q) i =

q

(x 1 x2)
2

+ (y 1 y2)
2
:

Let X = x( 1; y1; z1) and Y =
(x 2; y2; z2) be vectors in I1

3. The
isotropic inner productXof andY
is dened by

hX; Yi i =
z1z2;if x i = yi = 0

x1x2 + y1y2;if otherwise

We call a vector of the form
X = (00; ; z) in I1

3 an isotropic vec-
tor, and a non-isotropic vector oth-
erwise. ConsideCr a r -surfaceM,
r 1 , iIn 1

3 parameterized by

x(u; v) =x((u; v); y(u; v); z(u; v)):

A surface M immersed in I1
3

is called admissible ifi t has no
isotropic tangent planes. We restrict
our framework to admissible regular
surfaces ([1, 12, 9, 16]).

For such a surface, the coecients
E; F; Gofi tsr st fundamental form
are calculated with respect to the
induced metric and the coecients
L; M; N of the second fundamental
form, with respect to the normal
vectore ld of a surface which is al-
ways completely isotropic. Ther st
and the second fundamental form of
M are dened by

I = Edu2 + F dudv+ Gdv2;

II = Ldu2 + Mdudv+ Ndv2;

where

E = hxu ;x u i i ; F = hxu ;x v i i ;

G= hxv ;x v i i ;

L =
det (x u ;x v ;x uu )

p
EG F 2

;

M =
det (x u ;x v ;x uv )

p
EG F 2

;

N =
det (x u ;x v ;x vv )

p
EG F 2

:

SinceEG F 2 > 0, for the func-
tion in the denominator we often
put W 2 = EG F 2. The isotropic
unit normal vectore ld is given by
U = (0;0;1): The isotropic Gauss-
ian curvature K and the isotropic
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mean curvatureH are dened by

K =
LN M 2

EG F 2
; 2H =

EN 2F M + GL

EG F 2
:

The surface M is said to be
isotropic at (resp. isotropic minimal
) if K (resp. H) vanishes ([1, 4, 9, 11,
12, 13]).

We conne our discussion to regu-
lar surfacesxwithout isotropic tangent
planes. Thus, we may write in explicit
form,

x : w= h(u; v):

3. Factorable Surfaces in I1
3

A surface in Euclidean 3-space is
called as a factorable or homothetical
if the graph ofi ts surface is associated
with w = f(u)g(v). Their classica-
tion in E3 with constant Gaussain and
mean curvatures are obtained in [7, 17].
Zong et al. [18] generalized factorable
surfaces to ane factorable surfaces in
E3 as the graph of the function

w= f(u)g(v+ cu); 6=c 0:

In Minkowski space E3 , factorable sur-
faces arises as a graph of functions

' 1 :w= f(u)g(v); ' 2 :v= f(u)g(w);

' 3 :u= f(v)g(w)

There are six dierent classes of fac-
torable surfaces Ein 3

1 with respect to
the character of directions [10]. Their
classication with constant Gaussian
and mean curvature are obtained in
[10, 15].

In addition to E3 andE 3
1 , there are

two types of factorable surfaces in 3-
dimensional simply isotropic spacIes 1

3

arising from the product of uvplane
and the isotropic w direction with
degenerate metric [9]. Due to the
isotropic axes Iin 1

3 the factorable sur-
face' 1 is dierent from ' 2 and' 2 . We
call' 1 as factorable surface of ty1pe
[2] and is parametrized as

(1) x(u; v) = (u; v; f (u)g(v)):

The dual isotropic Gaussian and dual
isotropic mean curvature of ' 1 can be
easily found as

K =
1

f 02g02 + fgf 002g002
;

H =
fg 00+ gf 00

2 f 02g02 + fgf 002g002

(2)

The graphs of ' 2 and ' 3 are lo-
cally isometric and, upto to a sign, have
same second fundamental form. There-
fore upto a sign, they have same Gauss-
ian and mean curvature, 'so 2 or' 3 is
called as factorable surfaces of type2
[2] and is parametrized as

x(u; w) = (u; f (u)g(w); w);

x(v; w) = (f (v)g(w); v; w):
(3)

The dual isotropic Gaussian curvature
and dual isotropic mean curvature of
' 3 can be easily found as
(4)

H =
f 2 g0 f 0g 2 + 1 g00 + gg 02 f f 00 2f 02

2 f 02 g02 + fgf 002 g002

(5) K =
(fg 0)

4

f 02g02 + fgf 002g002
:

In this paper, wen d the explicit forms
of dual isotropic factorable surfaces
of type-1 with constant Gaussian and
mean curvatures. A similar discussion
of type-2 can be a problem of future
research. Noting that throughout this
paperc 0

i swill denote non-zero reals and
d0

i sas any real number.

4. Dual isotropic factorable
surfaces of type-1 in I1

3

Suppose that the dual isotropic
GaussianK curvature of ' 1 is a non-
zero constant, then from (2), we have

(6) f 02
g02

+ fgf 002g002 =
1

K

Case 1: Supposef = c1u+ d1 be lin-
ear, then from (6), we have

g=
v

c1

p
K

+ d2 :
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Case 2: Supposef be non-linear, di-
viding (6) by f f 00, we get

(7) gg00=
1

K f f 00
+

f 02
g02

f f 00

Dierentiating (7) partially w.r.t. v, we
get

gg00 0
=

f 02

f f 00
g02 0

:

Sincef andgare functions of two inde-
pendent variablesuandv, above equa-
tion can be written as

(8)
(gg00)

0

g02 0 =
f 02

f f 00
= p;

wherepis a constant. From (8), we get
the following system of equations

(9)
gg00 pg02

= a

f 02
pf f 00= 0;

for some constanat. Thus from (9), we
get
(10)8
>>>><

>>>>:

f = c2ec1 u ;

g= 1
4
ee c 1 vd 2 d3 + e2ec 1 (v+d 4 ) ;

or

g= 1
4
ee c 1 vd 2 1 + 4ae2ec 1 v+d 5

;

for p= 1
or,
(11)(

f = c2

p
2u d1

g=
q

e2c 1

a
+ av2 + 2avd 2 + ad2

2

;

for p= 1.
Hence, we have the following result.

Theorem 4.1. Let M be a factorable
surface of type-1 in simply isotropic
spaceI 1

3 with dual isotropic Gaussian
curvature K 6= 0, thefn = c1u+ d1

andg= v

c1
p

K
+ d2 , or are given by

(10) and (11).

Also, from (2), we see that

Corollary 4.2. There are no fac-
torable surfaces of type-1 in I1

3 , with
vanishing dual Gaussian curvature.

Now, suppose the dual isotropic
mean curvature o'f 1 is a non-zero con-
stant H 6= 0. Then, from (2), we have
(12)

f 00

f
+

g00

g
= 2H

 
f 02

g02

fg
+ f 00g00

!

Case 1: Supposef = c1u+ d2 be lin-
ear, then from (12), we get

(c1u+ d2)g00= 2H (c 2
1g02

):

Dierentiating above equation w.r.t. u,
we get

c1g00= 0:

This implies that g is also linear i.e.,
g= c3v+ d4 :
Case 2: Supposef and g are non-
linear. Dierentiating (12) w.r.t. uand
v, we get

 
f 02

f

! 0  
g02

g

! 0

= f 000g000:

Sincef andgare functions of two in-
dependent variablesuandv, the above
equation can be written as

(13)
1

f 000

 
f 02

f

! 0

=
g000

g02

g

0 = p;

wherepis a constant.
From (13), we get the following equa-
tions

(14) f 02
pf f 00= af;

and

(15) gg00= pg02
+ bg;

wherea; bare constants. Leat 2 + b2 6=
0:
The cases for which the solutions of
(14) and (15) exists are as following.
Subcase 2.1: Suppose p( = 1; a = 1)
and (p= 1; b= 1), from (14) and (15),
we get

(16) f = c3 sinh
1

2
(c 1u+ d2)

2
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and
(17)8
><

>:

g=
ec 1 vd 2 (e2c 1 (v +d 3 ) +16c 4 ec 1 v+d 2 +64c 2

4 )
16c 2

4

g=
ec 1 vd 2 (1+16 c4 ec 1 v+d 2 +64c 2

4 e2c 1 (v +d 3 ) )
16c 2

4

Subcase 2.2: Suppose p( = 1; a 6= 1)
and (p= 1; b6= 1), from (14) and (15),
we get
(18)8

><

>:

f =
ec 1 ud 2 (ec 1 u+d 2 8ad 3 )2

16c 2
4

f =
ec 1 ud 2 (1+8ad 3 ec 1 u+d 2 )2

16c 2
4

and
(19)8

><

>:

g=
ec 1 vd 2 (ec 1 v+d 2 8bc 3 )2

16c 2
3

g=
ec 1 vd 2 (1+8bc 3 ec 1 u+d 2 )2

16c 2
3

Theorem 4.3. Let M be a factorable
surface of type-1 in simply isotropic
spaceI 1

3 with dual isotropic mean cur-
vatureH 6= 0, thenf andgare either
both linear or given by (16),(17),(18)
and (19).

Now, suppose that the dual
isotropic mean curvature of factorable
surface of type-2 vanishes identically,
then from (2), we have

fg 00+ gf 00= 0:

The above equation can be written as

(20)
f 00

f
=

g00

g
= p;

wherepis some constant. From (20),
we get

(21) f = c1e
p

pu + c2e
p

pu ;

and

(22) g= c3 cos (
p

pv) + c4 sin (
p

pv):

Therefore, we have the following result.

Theorem 4.4. Let M be a factorable
surface of type-1 in simply isotropic
spaceI 1

3 with dual isotropic mean cur-
vatureH = 0, then f andgare given
by (21) and (22) .
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